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On Sequencing Retrievals in an

Automated Storage/Retrieval System

Abstract . .

The problem addressed in this paper is the possible improvement in,

AS/KS throughput by sequencing retrievals in dual command cycles. An

expected cycle time model is developed for a nearest-neighbor sequencing 0

heuristic along with a lower bound on average cycle time. Some critical

elements in evaluating retrieval sequencing heuristics are also high-

lighted.

Introduction

Automated storage/retrieval systems (AS/RS) are widely used in ware-
,-0

housing, and often found in manufacturing. The basic components of an

AS/RS are the storage racks and the S/R machines. The corresponding

design parameters are storage capacity, or number of storage locations,

and throughput capacity, or maximum number of transactions per hour.

For a single aisle in an AS/RS, the throughput capacity is defined

3 by the inverse of the average cycle time, i.e., the average amount of

time required for the S/R machine to store and/or retrieve a unit load.

Cycle time includes travel time and shuttle time, which is the time

required to pick up or deposit a load, and typically depends on the S/R

specification. Average travel time, on the other hand, depends on both

the speed of the S/R machine and the dimensions of the rack.

Estimating the average S/R cycle time is a fundamental step in AS/RS

design. One way to improve throughput capacity of a storage aisle is to

reduce the dimensions of the rack, thereby reducing average travel time.

In order to maintain a constant storage capacity for the overall system sf""'
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as the number of storage locations per aisle is reduced, additional

aisles will be required. Since the cost of the total system is very

sensitive to the number of aisles, it is critical to know when the

average S/R cycle time is small enough to satisfy the throughput require-

ment for a storage aisle.

The problem of estimating S/IR cycle time in a conventional unit load

AS/RS has been studied by Gudehus (61, Graves, Hausman and Schwartz [5,

" 7, and 131, Bozer and White (1), and Rizo-Patron, Dozer, and McGinnis

[121. In these studies, two types of S/R machine cycles are examined:

single command (SC):
r6,

a single storage or retrieval is performed; storage cycle time
S.- is equal to the sum of load (pick-up) time plus travel time to

storage location plus unload (deposit) time plus return time to
P/D station; retrieval cycle time is similar; and

dual command (DC):

both a storage and a retrieval are performed; cycle time is the
sum of load time plus travel time to storage location plus
unload plus travel time to retrieval point plus load time plus
return time to P/D station plus unload time.

A primary objective in each of the studies is the development of

* -analytic expressions for the expected time to complete a cycle of speci-

fied type. A common practice, reflected in the studies, is that both

storage and retrieval requests are processed in first-come-first-served

(FCFS) manner, and that storages go to the closest open location (COL).

The FCFS assumption is reasonable for storages, since most AS/R systems

are interfaced with a conveyor loop for input and output. In this case,

there is no capability for changing the order of loads presented for

storages. However, for retrievals, the FCFS assumption is less

2
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compelling. Retrieval requests are nothing more than messages, typically

in some control computer. Hence, there is no intrinsic reason why they
.5

cannot be rearranged into any convenient sequence.

The available expected cycle time equations can be quite accurate,

as demonstrated by the detailed simulation results given by Rtzo-Patron,

Bozer and McGinnis [12]. A natural question, however, is whether or not

the AS/RS throughput performance can be improved by cleverly sequencing

* the retrievals, so that the time spent in traveling between the storage

and retrieval locations of dual command cycles is reduced. If so, the

expected cycle time models currently available will overestimate travel

time, and therefore underestimate throughput.

Sequencing retrieval requests optimally is a complex problem. In

the first place, the list of retrievals changes through time as old

requests are filled and new requests appear. How should the sequencing

of retrievals be managed in such a dynamic situation? Two alternatives

exist: select a "block" of retrievals, sequence the block, and repeat; or

resequence the list every time a new request is added, but employ due

dates or priorities to ensure that a retrieval at the far end of the .

aisle is not excessively delayed. In this paper, we adopt the first

alternative. While it may not be the best, it is simple to implement and

provides a lower bound on throughput improvement, i.e., more sophisti-

cated strategies may perform even better.

The problem of optimally sequencing a given list of retrievals is

provably hard. In the case of a single open location for the initial

storage operation, the sequencing problem is equivalent to a traveling

salesman problem (4,8,9]. Thus, it is NP-complete [2,10,11]. Further,

the problem is no easier to solve if there exist multiple open locations. 0
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Optimum sequencing of retrievals is known to be, at least theoretically,

a difficult problem. Also, implementation of retrieval sequencing .

, requires modification of existing control software. Therefore, the first

question to be answered is:

"Can retrieval sequencing make
a significant improvement?"

To answer the question, consider the relative increase in throughput

Sresulting from a given relative reduction in travel time between storage

point and retrieval point (referred to as travel-between). Analysis

t indicates for a typical AS/RS configuration that operating with 100% dual

commands, a 60% reduction in travel-between times yields 12% increase in

throughput. The latter is considered to be significant.

The next question to be answered is:

"Can a 60Z reduction in travel-between
be achieved with reasonable effort?"

To answer the question, a "nearest neighbor" heuristic is applied in

sequencing retrievals. The heuristic is easy to implement and requires

minimal computational resources. In fact, all computations were per- 

formed using compiled Basic language and an IBM PC-XT microcomputer.

The results obtained indicate that a block of size 15 to 20

retrievals reduces travel-between by 60%, with one open location

" provided. With more open locations, greater reduction results. A lower

bound on average dual cycle time can be established for different block "

L 4

j . ..-... ---



C-

sizes and numbers of open locations. Based on the lower bound, the

opportunity for further improvement in throughput can be estimated.

Modeling Throughput Improvements
Suppose that only dual commands will be performed and that there is

I a retrieval list, which can be as large as desired. The travel-between

for a series of dual commands is illustrated in Figure I for a single

K open location and eight retrieval points. (In practice, there often will

be several open locations, but that would needlessly clutter the figure.) .

The dashed line in the figure represents the travel-between using FCFS

for retrievals, while the solid line represents the travel-between using

a "nearest-neighbor" heuristic for sequencing retrievals. In the example P

the travel-between is much smaller for nearest-neighbor sequencing.

1Figure I here

The expected travel time using VCFS for single and dual commands is

Ic modeled in [1] as follows:

s horizontal travel speed

s a vertical travel speed
v

L a rack length

R rack height

Lt--

tv
v

T -max (thtv)

5



1 2
'- E(sc ) -1 +l S b2 IT:"'

- expected single command travel time.I 2  _ ]T b2 3]'-::.

E(TB) - [-L + - 3 (2)

- expected travel-between time for DC.

[ 4 1 2 1 3 -
+(DC) - b + - b ]T (3)

- expected dual command travel time.

The expression for expected travel time can be modified in a simple way

to account for rack utilization, as shown In [12).

Let T represent the load/unload time and suppose that a set of n

dual commands is to be performed. The total time to perform the 2n

operations (n storages plus n retrievals) in FCFS or random order is

given as [nE(DC) + 4nT]. Therefore, the average throughput per unit

time, y, is:

2n (4)
Y nE(DC)+4n (4)

R In performing the n dual commands, the expected total travel-between is

given by nE(TB).

Now suppose that an a100% reduction in average travel-between can be

achieved through retrieval sequencing. What improvement in throughput

will result? The new throughput, y', will be;

2n
- nL( C) - aE(TB)J + n T

2 (5)
E(D) - aE(TB) + 4T

- -I



Let ' = ,(1+0) so that 0100% is the resulting improvement in throughput.

Solving for 0 in term of a,

(D)E(DC) + - (6).

=(DC) - aE(TB) + 4-

If travel-between is completely eliminated in a typical AS/RS, with b-1,

T-I minute, and T-0.2 minutes, the throughput improvement will be 22%, as

calculated below:

- 1.8 + 4(0.2).2 - 0.22
1.8 - 0.47 + 4(0.2) 1 0

Figure 2 illustrates the relationship between B and s, for the case of

- 0.2, T - 1, and b - 0.6, 0.8, and 1.0. The relationship between B

and a is essentially unchanged for other reasonable values of T and T.

Figure 2 here

The results in Figure 2 lead to the conclusion:

For significant improvement in throughput (i.e., 10 to

15%), the travel-between must be reduced by over 50%,
relative to FCFS retrieval.

. Thus, a "threshold" performance criterion is established for any

-_ _- retrieval sequencing algorithm to be a serious candidate for

implementation.

Analysis of Nearest-Neighbor Heuristic

The nearest-neighbor heuristic is a very simple procedure for

sequencing retrievals. lt R be the block of n retrieval locations and

rn [denote by S the set of initial storage locations, i.e., open locations.

7
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Then the nearest-neighbor heuristic is;

While R 0

1. Select a pair, r e R and s e S, with minimum travel-between ,

distance.

2. Perform a DC, storing in s and retrieving from r.

I 3. R+ R- {rli

4. S S- (s) + {r}

End

It is reasonable to expect that the average travel-between will

decrease as the size of the retrieval block increases and as the number

i [- of open locations increases. In the following, an analytic model is

N
* . developed for the expected value of TBnm i.e., the travel-between using• _ ~n,ms •.

the nearest neighbor heuristic when n retrievals and m open locations are

given. The model is then evaluated using Monte Carlo sampling.

Bozer and White [1] show that the distance between two randomly

... selected locations is a random variable, Z, with pdf and cdf:

(2 2z)[2 - (b)2 0 c z<b

f(z) - + (2z -z )112- b(7)
b

_2(0 z) b 4 z 1

-2 .b. 2
• { ~~(2z- z2)(2(1z) -  .2 0 < z < b"' ,'-

F(Z) 2z z2 b z 4 1 (8)

Given a sample of n random distances, the smallest of them, zn, is a

it_ 8 t_



random variable having density function:

g(z- n[ I F(z f(zn) 0 C z 1 (9)(n) n - n

Therefore, the expected value, E(Zn) can be found from:n

E(Z )  f z n[1 F(z)]n-lf(z)dz (10)

using the expressions in (7) and (8) above for f(z) and F(z). We have

evaluated (10) numerically for n 1 ,...,40, and for several values of b.

The results are displayed in Table 1.

Table I here

The numerical results obtained will be used to approximate the
NN0

average value of TB n  via the following argument. If the completen ,m

- sequence of storage and retrieval operations is observed, the last dual

command will have a specified retrieval location and a choice among m

open locations for its accompanying storage location. The next to the -

' last dual command will involve travel between the particular retrieval

location and one of m currently open locations or the last remaining

retrieval point (should it be performed first). Continuing the process,

the first dual command will have travel-between corresponding to one

retrieval location and a choice of one of m open locations or n-I

retrieval points.

Therefore, the expected value of TB for nearest-neighbor
n,m

NN
sequencing, ETB ) can be approximated as:

9
.. . : . :7-.
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NM ~- ~n+u-1 (1
I"TBNN E E(Z) (1)

im

Then the expected dual command cycle time for the nearest-neighbor

NN
heuristic E(DC , can be approximated as:n,m

°0

E(DC) - E(SC) + E(ThB') (12)

Using the values of E(Z ) from Table 1, the values of E(TBN) and of 0n n,m

-(DCNNm ) are tabulated in Table 2, for b - 1 and T 1. Note that
n,m
NNE(TB ) is not symmetric with respect to n and m.

Table 2 here

To assess the accuracy of the approximation in (11), and conse-

quently in (12), the nearest-neighbor heuristic was applied to retrieval .

lists generated by Monte Carlo sampling. The results are shown in Table

3. In the Monte Carlo sampling procedure, points were randomly chosen in

S- the continuous rectangle with dimensions I x b. For each sample, n

random retrieval points and m random open points were generated. The

nearest-neighbor heuristic rule was applied until the n retrievals were

complete. For each n and m combination a total of 1,000 samples were S

generated. The values of E(DCN ) from approximation equation (12) are
nm

- . plotted together with the results of Monte Carlo sampling, in Figure 3.

Table 3 here

," Figure 3 here

10
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The approximation results appear to be quite accurate over practical

ranges of n and m. Based on the approximation, it appears that the

nearest-neighbor heuristic will yield at least a 60% reduction in . -

travel-between with a block size of 15 to 20 (refer to Table 2). Based

on the expected value model, Figure 4 illustrates the impact of block -

size on throughput increase for varying number of open locations. As the

number of open locations increases, the throughput improvement increases,

and is relatively insensitive to block size. For example, with three
S

open locations, a 15% increase in throughput is achieved with a block

size of 4. Whereas, the same improvement with a single open location

F= requires a block size of 11.

Figure 4 here

Lower Bound on Expected Dual Cycle Time

-- The approximation in (12) provides an upper bound on the best

- possible average dual command cycle time. Furthermore, the corresponding

I .. nearest-neighbor heuristic can provide a significantly smaller average .

cycle time than the FCFS rule.

.* A question that remains is:

"How much additional reduction in average cycle time is
theoretically possible?"

To answer the question, a lower bound on the average dual command cycle

* . time is-needed. Note that E(SC) provides a lower bound. Unfortunately,

it is not a very tight bound.

To establish a better bound, the notions of order statistics are

used again. In addition, it is desirable to distinguish "travel-between"

11°.•,•

* *--..-•



and "effective travel-between". To illustrate, Figure 5 shows a single

retrieval point, denoted r, which is to be matched with some storage

point to form a dual command cycle. If the storage point, e.g., point s,

*" ":. lies outside the crosshatched area the cycle time will be T + T + Tr - ". -.
- sr

with T the travel-between. If the storage point, e.g., point t, liesPL- sr

inside the crosshatched area, the cycle time will be Tt + Ttr + Tr

Figure 5 here

Because the S/R machine moves simultaneously in the horizontal and

vertical directions, T + T - T In other words, the dual comand
t tr r

cycle with storage at t and retrieval at r has exactly the same travel

* .time as a single command retrieval from r. The crosshatched area is

referred to as the "no cost zone", since a storage operation within the

region is essentially free with regard to travel time. Also, in this

case, the dual command cycle is said to have zero effective

travel-between.

Now suppose that there are n randomly distributed retrieval points

and a randomly distributed open locations. Denote by r (s) an arbitrary

' . retrieval (storage) point and by T (T ) the travel time between r (s)
r s

and the P/D station. Let T be the travel time between r and s. If s
rr

" ~is in the no cost zone for r, the total travel time is 2Tr, but if s is ..

outside the no cost zone for r, the total travel time is T + T + T
8 sr r

Let p3 denote the probability, given a randomly distributed open

locations and a random retrieval point, that at least one open location

falls in the no cost zone for the retrieval point.

Using the notion of a no cost zone, a lower bound can be established

for dual cosa-nd cycle time using the following argument. Suppose an

4-. ?L
12
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optimal retrieval sequencing rule exists, with resulting expected values

E(DCn) and E(TB,). Note that E(TBn) is larger than the average . .n'm n,m n,m

effective travel-between, because it includes nonzero travel-between

values for storages in the no cost zone. Under the assumption that

storages and retrievals are always randomly distributed, - "-"

*m *)
E(DC )-E(SC) + [1I pm]E(TB )(13)n•m nm

where the term, [I-P 3 ]E(TB n,m) represents the average effective travel- -
m*

between. It can be argued that K(TB ) E(Z+ ) since Z is then,m n-H-1 n4m-1

random variable for the smallest possible travel-between. Therefore

LB
E(DC ) - E(SC) + (1 p.)E(Zn+m) c E(D )

and any heuristic solution is greater than E(DCLB i.e.,
n,m

IN LB
E(DC m) E(DC > E(DCn) (1)

The probability of having no open locations in the no cost zone can

be estimated by the following reasoning. Under the assumption that open

locations are randomly distributed in a lxb rectangle, the number of open S

locations found in an area of size A will follow the Poisson distribution

with parameter XA,

number of open locationswhereX
total area of rectangle

13
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Therefore, the probability of having no open location in an area of size

A will be:

.-Pr(no open location in area of size A) - exp(-XA)

a exp(-A
It.-

V
- exp(-A) for b = I

When b 1 1, the expected value of the area of the no cost zone is 0.125.

Consequently, the lower bound of dual cycle time is:

r -m) E(SC) + E(Z n+m.1)exp(-0.125 m) (15)

The values of E(DC'm) are tabulated in Table 4 for different values of n

NN
and m. In Figure 6, the lower bound E(DCLm) is compared with E(DCn,')"

for n - 1,...,20 and a - 1 and 10. Recall that for this case, E(SC) -

, .- 1.333, so the proposed lower bound is a significant improvement.

, Table 4 here

Figure 6 here

"- The final step in the analysis is to examine the results in terms of

throughput. An upper bound on throughput can be determined using the

lover bound on average dual command cycle time. Also, the expected

.. throughput can be determined from the expected dual command cycle time

" "using the nearest-neighbor sequencing heuristic. The gap between the

two, or potential for further improvement is:

14
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Cx: LB + 4T -

r -(D -1 (16)

E(DC + 4-
n ,m

Values of r for T = 0 are given in Table 5. Note that the gap never

exceeds 8%. For realistic values of T, say 0.2 minutes, the maximum gap

is close to 5%. Thus it can be concluded for this particular

application that the nearest-neighbor sequencing rule is quite effective.

Its average performance is within 5 - 8% of optimum. As an aside, its

computational requirements are quite modest - using compiled Basic on an

U IBM PC/XT, the time to generate and sequence a sample of 20 retrieval

points was less than one second.

Table 5 here

An Improved Heuristic - Maybe

.-'..The analysis of the lower bound on the average dual command cycle

time employs the notion of a no cost zone. Such an approach leads

natually to the consideration of heuristics that exploit the possibility

of zero effective travel-between. As an example, consider the

shortest-leg heuristic, defined as follows:

" .Repeat

For each s e S

Tsr(s) -min[T T.

Endfor

I7

T ui(-rsr(s)]

s s +(t)-(o.

•............................................ii

.t. .

oa - .' % * .' .



Until R 0 .0

The shortest-leg heuristic selects the storage and retrieval points that

- require the least travel (shortest-leg) to the retrieval point. Observe

that for the retrieval point selected, if there is a storage point with

zero effective travel, then such a point will be selected.

Figure 7 displays Monte Carolo sampling results for the shortest-leg

heuristic with n C 9 and a - 3 or 6. Each experimental value is the

average of 1000 samples. Several conclusions can be drawn from the

C figure. First, the shortest-leg heuristic consistently outperformed the

nearest-neighbor heuristic. Second, the sampling results for the

nearest-neighbor agree very well with the predictions of the analytic

model. Third, for large m and small n, the shortest-leg heuristic yields

results quite close to the lover bound.

Figure 7 here

The natural conclusion, based on Figure 7, is that the shortest-leg

heuristic would be preferred. Note, however, that the method used in

Monte Carlo sampling restarted the system for each sample, i.e.,

. generated both new retrieval points and new storage points. An alternate

sampling regime is to resume after each sample, i.e., retain the open

locations at the end of a sample for use in the next sample, and generate

only the new retrieval locations.

Surprisingly, the resumed sampling results were dramatically

i different from those for restart sampling. Figure 8 presents the results

for both sampling regimes, along with the analytic lower bound. The

nearest-neighbor heuristic yields almost identical results for both

f
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sampling regimes. The shortest-leg results, however, deteriorate

markedly under resumed sampling, and are, in fact, significantly inferior

to the nearest-neighbor heuristic.

Figure 8 here

It appears that the shortest-leg heuristic has an undesirable side

effect on the distribution of the open locations. The conjecture is at

least partially verified by Figure 9, which shows for each sampling

regime, the average distance from the P/D station to open locations after

every 50 samples. For restarted sampling, the average value fluctuates

around 0.667, as expected. On the other hand, with resumed sampling, the p

average distance increases to a value around 0.88. This is quite

remarkable, since the maximum possible distance is only 1.0!

K Figure 9 here

It is not so important whether or not the nearest-neighbor heuristic

is the best. lather, the point is that every conceivable heuristic will

have its own distinctive dynamic behavior. Any procedure for evaluating

the heuristics must take into account such dynamic behavior. In the case

of the shortest-leg heuristic, the open locations, although randomly

distributed to begin with, tend to migrate over time to undersirable

locations far from the P/D station. In contrast, the nearest-neighbor

heuristic tends to preserve the randomness of the open locations.

. 1.



Conclusions .

S-We have addressed the problem of improving throughput capacity of

* -. unit load AS/RS by sequencing the retrieval requests. The important

results presented are:

(1) the conclusion that a 10 - 15% improvement in throughput
can be obtained by reducing the average travel-between
component of dual command cycle by 50% or more;

(2) an equation for approximating the average dual command
cycle time using a nearest-neighbor sequencing heuristic:

(3) a lower bound on the average dual command cycle time for
any block sequencing rule;

(4) the conclusion that the nearest-neighbor heuristic
obtains average throughput within 5 - 8% of the maximum
possible average throughput; and

(5) a demonstration of the importance of dynamic analysis of
sequencing heuristics.

The results in (2) and (3) are, so far as we know, unique.V -. Naturally, the issues addressed are relevant only if the AS/RS is

throughput bound, perhaps in peak transaction periods. In addition,

two key assumptions are that the arrival processes for storages and

retrievals are random, and that a randomized storage policy (i.e., no

zones") is used. These assumptions appear to be quite reasonable for

many work-in-process applications as well as more traditional warehousing

systems.

'o • .1 8
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Table 1. Expected Value of the Smallest of n Random Distances

5 )E(Z

n b-.6 b-.7 b-.8 b-.9 b-1.0

1 0.3861 0.4036 0.4229 0.4440 0.4667
2 0.2703 0.2877 0.3052 0.3226 0.3397
3 0.2188 0.2343 0.2494 0.2639 0.2781
4 0.1883 0.2021 0.2154 0.2281 0.2403 0,

5 0.1675 0.1801 0.1920 0.2034 0.2143
6 0.1522 0.1638 0.1747 0-.1851 0.1951
7 0.1404 0.1511 0.1613 0.1709 0.1801
8 0.1309 0.1410 0.1505 0.1594 0.1680
9 0.1231 0.1326 0.1415 0.1500 0.1580
10 0.1164 0.1255 0.1339 0.1420 0.1496
11 0.1108 0.1194 0.1274 0.1351 0.1424
12 0.1058 0.1141 0.1218 0.1291 0.1361
13 0.1015 0.1094 0.1168 0.1238 0.1305
14 0.0976 0.1052 0.1124 0.1191 0.1256
15 0.0942 0.1015 0.1084 0.1149 0.1211
16 0.0910 0.0982 0.1048 0.1111 0.1171 5
17 0.0882 0.0951 0.1016 0.1077 0.1135
18 0.0856 0.0923 0.0986 0.1045 0.1102
19 0.0832 0.0898 0.0959 0.1016 0.1071
20 0.0810 0.0874 0.0933 0.0990 0.1043

i 21 0.0790 0.0852 0.0910 0.0965 0.1017
22 0.0771 0.0832 0.0888 0.0942 0.0993
23 0.0753 0.0813 0.0868 0.0920 0.0970
24 0.0737 0.0795 0.0849 0.0900 0.0949
25 0.0721 0.0778 0.0831 0.0881 0.0929
26 0.0707 0.0762 0.0814 0.0864 0.0910
27 0.0693 0.0748 0.0799 0.0847 0.0893I 28 0.0680 0.0734 0.0784 0.0831 0.0876
29 0.0668 0.0720 0.0770 0.0816 0.0860
30 0.0650 0.0708 0.0756 0.0802 0.0845
31 0.0645 0.0696 0.0744 0.0788 0.0831
32 0.0634 0.0685 0.0731 0.0776 0.0817
33 0.0624 0.0674 0.0720 0.0763 0.0804

, 34 0.0615 0.0663 0.0709 0.0752 0.0792 I

35 0.0606 0.0654 0.0698 0.0740 0.0780
36 0.0597 0.0644 0.0688 0.0730 0.0769
37 0.0588 0.0635 0.0678 0.0719 0.0758
38 0.0580 0.0626 0.0669 0.0710 0.0748
39 0.0573 0.0618 0.0660 0.0700 0.0738
40 0.0565 0.0610 0.0652 0.0691 0.0728
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Table 2-1, E(TBNIN), Average Travel-Between by Nearest-Neighbor.nsa

nr I 2 3 4 5 6 7 8 9 10

1 .4667 .3397 .2781 .2403 .2143 .1951 .1801 680 .5S0 .1496
2 .4032 .3089 .2592 .2273 .2047 .1876 .1741 .1630 .1538 .1460
3 .3615 .2860 .2442 .2166 .1965 .1811 .t687 .1585 .1500 .1427
4 .3312 .2681 .2320 .2075 .1894 .1753 .1639 1545 .1465 .1397
5 .3078 .2535 .2216 .1996 .1831 .1702 .1596 .1508 .1433 .1368
6 .2890 .2413 .2127 .1926 .1775 .1655 .1557 .1474 .1404 .1342

* 7 .2735 .2308 .2048 .1865 .1725 .1613 .1521 .1443 .1376 .1318
8 .2603 .2217 .1979 .1810 .1680 .1575 .1488 .1414 .1351 .1295
9 .2489 ,2137 .1918 .1760 .1638 .1539 .1457 .1387 .1327 .1273
10 .2390 .2066 .1862 .1714 .1600 .1507 .1429 .1362 .1304 .1253
11 .2302 .2002 .1811 .1673 .1564 .1476 .1402 .1338 .1283 .1234
12 .2224 .1944 .1765 .1634 .1532 .1448 .1377 .1316 .1263 .1216
13 .2153 .1891 .1722 .1599 .1501 .1421 .1353 .1295 .1244 .1199
14 .2089 .1842 .1683 .1566 .1473 .1396 .1331 .1275 .1226 .1183
15 .2030 .1797 .1647 .1535 .1446 .1372 .1310 .1256 .1209 .1167 P
16 .1977 .1756 .1613 .1506 .1421 .1350 .1290 .1238 .1193 .1152
17 .1927 .1717 .1581 .1478 .1397 .1329 .1272 .1221 .1177 .1138
18 .1881 .1682 .1551 .1453 .1374 .1309 .1254 .1205 .1162 .1124
19 .1839 .1648 .1523 .1429 .1353 .1290 .1237 .1190 .1148 .1111
20 .1799 .1616 .1496 .1406 .1333 .1272 .1220 .1175 .1135 .1099
21 .1762 .1587 .1471 .1384 .1314 .1255 .1205 .1161 .1122 .1087
22 .1727 .1559 .1447 1363 .1295 .1239 .1190 .1147 .1109 .1075
23 .1694 .1532 .1425 .1344 .1278 .1223 .1175 .1134 .1097 .1064
24 .1663 .1507 .1403 .1325 .1261 .1208 .1162 .1121 .1085 .1053

.25 .1633 .1483 .1383 .1307 .1245 .1193 .1148 .1109 .1074 .1042.

Table 2-2, E(TBNN ), Dual Cycle Time, Nearest-Neighbor Heuristic

- 7 a 9 10
1 1.7997 1.6727 1.6111 1.5733 1.5473 1.5281 1.5131 1.5010 1.4910 1.4826
2 t.7362 1.641g 1.5922 1.5603 1.5377 1.5206 1.5071 1.4960 1.4868 1.4790
3 .6945 1.6190 1.5772 1.5496 1.5295 1.5141 1.5017 1.4915 1.4830 1.4757

4 1.6642 1.6011 1.5650 1.5405 1.5224 1.5083 1.4969 1.4875 1.4795 1.4727
5 1.6408 1.5865 1.5546 1.5326 1.5161 1.5032 1.4926 1.4838 1.4763 1.4698
a 8 1.6220 1.5743 1.5457 1.5256 1.5105 1.4985 1.4887 1.4804 1.4734 1.4672
7 1.6065 1.5638 1.5378 1.5195 1.5055 1.4943 1.4851 1.4773 1.4706 1.4648

8 1.5933 1.5547 1.5309 1.5140 1.5010 1.4905 1.4818 1.4744 1.4681 1.4625

9 1.5819 1.5467 1.5248 1.5090 1.4968 1.4869 1.4787 1.4717 1.4657 1.4603
10 1.5720 1.5396 1.5192 1.5044 1.4930 1.4837 1.4759 1.4692 1.4634 1.4583

- 11 1.5632 1.5332 1.5141 1.5003 1.4894 1.4806 1.4732 1.4668 1.4613 1.4564

12 1.5554 1.5274 1.5095 1.4964 1.4862 1.4778 1.4707 1.4646 1.4593 1.4546

13 1.5483 1.5221 1.5052 1.4929 1.4831 1.4751 1.4683 1.4625 1.4574 1.4529

14 1.5419 1.5172 1:5013 1.4896 1.4803 1.4726 1.4661 1.4605 1.4556 1.4513

15 1.5360 1.5127 1.4977 1.4865 1.4776 1.4702 1.4640 1.4586 1.4539 1.4497

16 1.5307 1.5086 1.4943 1.4836 1.4751 1.4680 1.4620 1.4568 1.4523 1.4482
17 1.5257 1.5047 1.4911 1.4808 1.4727 f.4659 1.4602 1.4551 1.4507 1.4468

18 1.5211 1.5012 1.4881 1.4763 1.4704 1.4639 1.4584 1.4535 1.4492 1.4454
19 1.5169 1.4978 1.4853 1.4759 1.4683 1.4620 1.4567 1.4520 1.4478 1.4441
20 1.5129 1.4946 1.4826 1.4736 1.4663 1.4602 1.4550 1.4505 1.4465 1.4429
21 1.5092 1.4917 1.4801 1.4714 1.4644 1.4585 1.4535 1.4491 1.4452 1.4417
22 1.5057 t.4589 1.4777 1.4693 1.4625 1.4569 1.4520 1.4477 1.4439 1.4405
23 1.5024 1.4862 1.4755 1.4674 1.4608 1.4553 1.4505 1.4464 1.4427 1.4394
24 1.4993 1.4837 1.4733 1.4655 1.4591 1.4538 1.4492 f.4451 1.4415 1.4383
25 1.4963 1.4813 1.4713 1.4637 1.4575 1.4523 1.4478 1.4439 1.4404 1.4372
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Table 3. Results of Monte Carlo Sampling.

M 3 6 -
It (, . j(TB., j(D, ., -+ -i(,,BM 6CO ,

n. nfl n..

- i .4581 1.1016 .2923 1.6091 .2019 1.5588
2 .4093 1.7350 .2684 1.5945 .1902 1.5060
3 .3706 1.7090 .2509 1.5678 .1874 1.5218
4 .3433 1.6729 .2408 1.5465 .18o5 1.5046
5 .3169 1.6407 .2269 1.5489 .1750 1.4839
6 .2971 1.6283 .2199 1.5421 .1706 1.5100
7 .2832 1.6088 .2104 1.5398 .1634 1.4745
8 .2681 1.6026 .2040 1.5202 .1608 1.4889
9 .2571 1.5911 .1970 1.5278 .1608 1.4889
10 .2464 1.5740 0.0000 0.0000 0.0000 0.0000
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Table 4. E(DC LB , ower Bound of Average Dual Cycle Time.
n ,m

nf 1 2 3 4 5 6 7 8 9 10
1 1.7449 1.5976 1.5241 1.4787 1.4477 1.4252 1.4081 1.3948 1.3843 1.3759

7. 2 1.6328 1.5496 1.4982 1.4630 1.4374 1.4181 1.4030 1.3911 1.3816 1.3738
3 1.5784 1.5201 1.4803 1.4513 1.4294 1.4124 1.3989 1.3880 1.3792 1.3720
4 1.5451 1.4999 1.4671 1.4422 1.4229 1.4076 1.3954 1.3854 1.3772 1.3704
5 1.5221 1.4849 1.4568 1.4349 1.4176 1.4037 l.3924 1.3831 1.3754 1.3690
6 1.5052 1.4733 1.4485 1.4288 1.4131 1.4003 1.3897 1.3810 1.3738 1.3677
7 1.4919 1.4638 1.4416 1.4237 1.4092 1.3973 1.3874 1.3792 1.3723 1.3665
8 1.4813 1.4561 1.4358 1.4194 1.4058 1.3946 1.3854 1.3776 1.3710 1.3655
9 1.4724 1.4495 1.4309. 1.4155 1.4029 1.3923 1.3835 1.3761 1.3698 1.3646
10 1.4650 1.4439 1.4265 1.4122 1.4002 1.3902 1.3818 1.3748 1.3688 1.3637
11 1.4587 1.4390 1.4227 1.4092 1.3978 1.3883 1.3803 1.3735 1.3678 1.3629
12 1.4531 1.4346 1.4193 1.4065 1.3957 1.3866 1.3789 1.3724 1.3669 1.3621
13 1.4482 1.4308 1.4162 1.4040 1.3938 1.3851 1.3776 1.3714 1.3660 1.3614
14 1.4438 1.4273 1.4135 1.4018 1.3920 1.3836 1.3765 1.3704 1.3652 1.3608
15 1.4399 1.4242 1.4110 1.3998 1.3903 1.3823 1.3754 1.3695 1.3645 1.3602
16 1.4363 1.4214 1.4087 1.3980 1.3888 1.3810 1.3744 1.3687 1.3638 1.3596
17 1.4332 1.4188 1.4066 1.3963 1.3874 1.3799 1.3734 1.3679 1.3632 1.3591
18 1.4303 1.4164 1.4047 1.3947 1.3862 1.3788 1.3726 1.3672 1.3625 1.3586
19 1.4275 1.4142 1.4029 1.3932 1.3849 1.3778 1.3717 1.3665 1.3620 1.3581
20 1.4250 1.4122 1.4012 1.3918 1.3838 1.3769 1.3709 1.3659 1.3614 1.3576
21 1.4227 1.4103 1.3997 1.3906 1.3827 1.3760 1.3702 1.3652 1.3609 1.3572

r 22 1.4206 1.4085 1.3982 1.3893 1.3817 1.3752 1.3695 1.3646 1.3604 1.3568 p
23 1.4186 1.4069 1.3968 1.3882 1.3808 1.3744 1.3689 1.3641 1.3600 1.3564
24 1.4167 1.4054 1.3955 1.3872 1.3799 1.3736 1.3682 1.3636 1.3595 1.3560
25 1.4150 1.4039 1.3944 1.3861 1.3790 1.3729 1.3676 1.3631 1.3591 1.3557

Table 5. Efficiency of Nearest-Neighbor Heuristic.

m m
nfN 1 2 3 - 4 5 a 7 a 9l1-
1 .0314 .0470 .0571 .0639 .0688 .0722 .0746 .0761 .0771 .0776
2 .0633 .0596 .0628 .0665 .0698 .0723 .0741 .0754 .0762 .0766
3 .0735 .0651 .0655 .0677 .0700 .0720 .0735 .0746 .0752 .0756
4 .0771 .0675 .0667 .0681 .0699 .0715 .0728 .0737 .0743 .0746
5 .0780 .0684 .0671 .0681 .0695 .0709 .0720 .0728 .0734 .0737
6 .0776 .0686 .0671 .0677 .0690 .0702 .0712 .0720 .0725 .0728
7 .0768 .0683 .0668 .0673 .0683 .0694 .0704 .0711 .0716 .0719
8 .0756 .0678 .0662 .0667 .0676 .0687 .0696 .0703 .0708 .0710
9 .0744 .0670 .0656 .0660 .0670 .0679 .0688 .0695 .0699 .0702
10 • .0730 .0663 .0650 .0654 .0662 .0672 .0681 .0687 .0691 .0694
11 .0717 .0654 .0643 .0646 .0655 .0665 .0673 .0679 .0684 .0686
12 .0704 .0646 .0635 .0640 .0648 .0657 .0665 .0672 .0676 .0679
13 .0691 .0638 .0629 .0633 .0641 .0650 .0658 .0665 .0669 .0672
14 .0679 .0630 .0621 .0626 .0634 .0643 .0651 .0657 .0662 .0665
15 .0668 .0622 .0614 .0619 .0628 .0636 .0644 .0651 .0655 .0658
16 .0657 .0613 .0607 .0612 .0621 .0630 .0638 .0644 .0649 .0652
17 .0646 .0606 .0600 .0606 .0614 .0623 .0631 .0638 .0642 .0645
18 .0635 .0598 .0594 .0599 .0608 .0617 .0625 .0632 .0636 .0639
19 .0626 .0591 .0587 .0593 .0602 .0611 .0619 .0626 .0630 .0633
20 .0616 .0584 .0581 .0587 .0596 .0605 .0613 .0620 .0624 .0628
21 .0607 .0577 .0575 .0581 .0590 .0600 .0607 .0614 .0619 .0622

22 .0599 .0570 .0569 .0576 .0585 .0594 .0602 .0609 .0613 .0617
23 .0591 .0564 .0563 .0570 .0579 .0589 .0597 .0603 .0608 .0612
24 .0583 .0558 .0557 .0565 .0574 .0583 .0592 .0598 .0603 .0607
25 .0575 .0552 .0552 .0559 .0569 .0578 .0586 .0593 .0598 .0602
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Figure 1. Example of Retrieval Sequencing.
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